Face Presentation Attack Detection (PAD) demands incremental learning (IL) to combat evolving spoofing tactics and domains. Privacy regulations, however, forbid retaining past data, necessitating rehearsal-free IL (RF-IL). Vision-Language Pre-trained (VLP) models, with their prompt-tunable cross-modal representations, enable efficient adaptation to new spoofing styles and domains. Capitalizing on this strength, we propose \textbf{SVLP-IL}, a VLP-based RF-IL framework that balances stability and plasticity via \textit{Multi-Aspect Prompting} (MAP) and \textit{Selective Elastic Weight Consolidation} (SEWC). MAP isolates domain dependencies, enhances distribution-shift sensitivity, and mitigates forgetting by jointly exploiting universal and domain-specific cues. SEWC selectively preserves critical weights from previous tasks, retaining essential knowledge while allowing flexibility for new adaptations. Comprehensive experiments across multiple PAD benchmarks show that SVLP-IL significantly reduces catastrophic forgetting and enhances performance on unseen domains. SVLP-IL offers a privacy-compliant, practical solution for robust lifelong PAD deployment in RF-IL settings.
翻译:人脸呈现攻击检测(PAD)需要增量学习(IL)能力以应对不断演变的欺骗手段和领域。然而,隐私法规禁止保留历史数据,这要求实现无需回放的增量学习(RF-IL)。视觉-语言预训练(VLP)模型凭借其可提示调优的跨模态表征,能够高效适应新型欺骗模式与领域。基于此优势,我们提出\textbf{SVLP-IL}——一个基于VLP的RF-IL框架,通过\textit{多维度提示机制}(MAP)与\textit{选择性弹性权重固化}(SEWC)实现稳定性与可塑性的平衡。MAP通过联合利用通用线索与领域特定线索,实现领域依赖隔离、增强分布偏移敏感性并缓解遗忘问题。SEWC选择性保留先前任务的关键权重,在维持核心知识的同时为新任务适应保留灵活性。在多个PAD基准测试上的综合实验表明,SVLP-IL能显著降低灾难性遗忘,并提升在未见领域上的性能。SVLP-IL为RF-IL场景下鲁棒的终身PAD部署提供了符合隐私规范的实用解决方案。