We propose new Riemannian preconditioned algorithms for low-rank tensor completion via the polyadic decomposition of a tensor. These algorithms exploit a non-Euclidean metric on the product space of the factor matrices of the low-rank tensor in the polyadic decomposition form. This new metric is designed using an approximation of the diagonal blocks of the Hessian of the tensor completion cost function, thus has a preconditioning effect on these algorithms. We prove that the proposed Riemannian gradient descent algorithm globally converges to a stationary point of the tensor completion problem, with convergence rate estimates using the $\L{}$ojasiewicz property. Numerical results on synthetic and real-world data suggest that the proposed algorithms are more efficient in memory and time compared to state-of-the-art algorithms. Moreover, the proposed algorithms display a greater tolerance for overestimated rank parameters in terms of the tensor recovery performance, thus enable a flexible choice of the rank parameter.
翻译:我们建议采用新里曼尼式的先导算法,通过对压强的多元分解,进行低声压补全。这些算法在聚态分解形式中,利用对低声压的系数矩阵的产物空间的非欧几里德度度度度度度值。这个新衡量法是使用赫西安河两极区块的近似值来设计,因此对这些算法具有先决条件效应。我们证明,拟议的里曼尼梯度下行算法在全球汇集到高音补全问题的固定点,并使用美元(ojasiewicz)的趋同率估计值。合成和现实世界数据的数值结果表明,与最先进的算法相比,拟议的算法在记忆和时间方面效率更高。此外,拟议的算法在慢速恢复性表现方面对高估的等级参数表现出了更大的容忍度,因此能够灵活地选择等级参数。