The performance of multimodal mobility systems relies on the seamless integration of conventional mass transit services and the advent of Mobility-on-Demand (MoD) services. Prior work is limited to individually improving various transport networks' operations or linking a new mode to an existing system. In this work, we attempt to solve transit network design and pricing problems of multimodal mobility systems en masse. An operator (public transit agency or private transit operator) determines the frequency settings of the mass transit system, flows of the MoD service, and prices for each trip to optimize the overall welfare. A primal-dual approach, inspired by the market design literature, yields a compact mixed integer linear programming (MILP) formulation. However, a key computational challenge remains in allocating an exponential number of hybrid modes accessible to travelers. We provide a tractable solution approach through a decomposition scheme and approximation algorithm that accelerates the computation and enables optimization of large-scale problem instances. Using a case study in Nashville, Tennessee, we demonstrate the value of the proposed model. We also show that our algorithm reduces the average runtime by 60\% compared to advanced MILP solvers. This result seeks to establish a generic and simple-to-implement way of revamping and redesigning regional mobility systems in order to meet the increase in travel demand and integrate traditional fixed-line mass transit systems with new demand-responsive services.
翻译:多式联运系统的运行取决于常规大众运输服务的无缝一体化和需求流动(MOD)服务的出现。先前的工作仅限于个别地改进各种运输网络的运作或将新模式与现有系统连接起来。在这项工作中,我们试图解决大规模多式联运系统的过境网络设计和定价问题。运营商(公共过境机构或私人过境运营商)决定了大众过境系统的频率设置、交通部服务的流动和每次旅行的价格,以优化总体福利。在市场设计文献的启发下,初步的双重方法产生了一个紧凑的混合线性线性编程(MILP)的编制。然而,在分配旅行者可以使用的混合模式的成倍数方面,仍然面临着关键的计算挑战。我们通过分解计划和近似算法提供了一种可拉动的解决办法,加速计算和优化大规模问题实例。我们通过在田纳西州纳什维尔进行的一项案例研究,展示了拟议模式的价值。我们还表明,我们的算法比先进的MILP解决方案的高级解决者减少了平均运行时间60-%。在传统的过境需求中,力求在改进区域需求中建立一种通用和简化的移动系统,从而满足对区域需求进行简化的简化的通用和简化要求。