Unmanned Aerial Vehicles (UAVs), as a recently emerging technology, enabled a new breed of unprecedented applications in different domains. This technology's ongoing trend is departing from large remotely-controlled drones to networks of small autonomous drones to collectively complete intricate tasks time and cost-effectively. An important challenge is developing efficient sensing, communication, and control algorithms that can accommodate the requirements of highly dynamic UAV networks with heterogeneous mobility levels. Recently, the use of Artificial Intelligence (AI) in learning-based networking has gained momentum to harness the learning power of cognizant nodes to make more intelligent networking decisions. An important example of this trend is developing learning-powered routing protocols, where machine learning methods are used to model and predict topology evolution, channel status, traffic mobility, and environmental factors for enhanced routing. This paper reviews AI-enabled routing protocols designed primarily for aerial networks, with an emphasis on accommodating highly-dynamic network topology. To this end, we review the basics of UAV technology, different approaches to swarm formation, and commonly-used mobility models, along with their impact on networking paradigms. We proceed with reviewing conventional and AI-enabled routing protocols, including topology-predictive and self-adaptive learning-based routing algorithms. We also discuss tools, simulation environments, remote experimentation platforms, and public datasets that can be used for developing and testing AI-enabled networking protocols for UAV networks. We conclude by presenting future trends, and the remaining challenges in AI-based UAV Networking, for different aspects of routing, connectivity, topology control, security and privacy, energy efficiency, and spectrum sharing.


翻译:无人驾驶航空飞行器(UAVs)是最近正在出现的一种技术,它在不同领域促成了一系列前所未有的新应用。这一技术的持续趋势正在从大型遥控无人驾驶飞机转向小型自主无人驾驶飞机网络,以集体完成复杂的时间和成本效益高的任务。一个重要的挑战是开发高效的遥感、通信和控制算法,以适应高度动态的UAV网络的要求,其流动性程度各异。最近,在基于学习的网络中利用人工智能智能(AI)已经获得动力,以利用认识节点的学习能力来做出更明智的联网决定。这一趋势的一个重要例子是开发学习-动力路由性路由规则,利用机器学习方法来模拟和预测地形演变、频道状态、交通流动性和环境因素,以加强航线安排。本文审查了主要为航空网络设计的由AI驱动的路线协议,重点是适应高动态网络的地形。为此,我们审查了基于遥感技术的基础、不同方式的网络形成和常用的流动模式,以及其对网络模式的影响。我们还着手审查并讨论了包括传统和AI级测试在内的高级和高级系统测试环境。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
胶囊网络资源汇总
论智
7+阅读 · 2018年3月10日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
胶囊网络资源汇总
论智
7+阅读 · 2018年3月10日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员