In this paper, we study the impact of the base station (BS) idle mode capability (IMC) on the network performance in dense small cell networks (SCNs). Different from existing works, we consider a sophisticated path loss model incorporating both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions. Analytical results are obtained for the coverage probability and the area spectral efficiency (ASE) performance for SCNs with IMCs at the BSs. The upper bound, the lower bound and the approximate expression of the activated BS density are also derived. The performance impact of the IMC is shown to be significant. As the BS density surpasses the UE density, thus creating a surplus of BSs, the coverage probability will continuously increase toward one. For the practical regime of the BS density, the results derived from our analysis are distinctively different from existing results, and thus shed new light on the deployment and the operation of future dense SCNs.


翻译:在本文中,我们研究了基站闲置模式能力(IMC)对密集小细胞网络网络性能的影响。与现有工程不同,我们认为一种复杂的路径丢失模式,既包括视线(LOS)传输,也包括非视线(NLOS)传输。分析结果针对的是基准站闲置模式能力(IMC)对密集小细胞网络的网络性能的影响。分析结果针对的是基准站内闭路电视和闭路电视的覆盖概率和区域光谱效率(SASE)性能。还得出了活性BS密度的上界、下界和大致表现。显示,该功能影响显著。由于BS密度超过UE密度,从而造成BS的过剩,覆盖概率将持续上升至1。对于基准系统密度的实际制度,我们分析的结果与现有结果截然不同,从而对未来密集的SCN的部署和运行提供了新的启示。

0
下载
关闭预览

相关内容

抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
38+阅读 · 2020年3月10日
Single-frame Regularization for Temporally Stable CNNs
Arxiv
6+阅读 · 2018年11月29日
Arxiv
4+阅读 · 2018年4月10日
VIP会员
相关VIP内容
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员