An essential part of research and scientific communication is researchers' ability to reproduce the results of others. While there have been increasing standards for authors to make data and code available, many of these files are hard to re-execute in practice, leading to a lack of research reproducibility. This poses a major problem for students and researchers in the same field who cannot leverage the previously published findings for study or further inquiry. To address this, we propose an open-source platform named RE3 that helps improve the reproducibility and readability of research projects involving R code. Our platform incorporates assessing code readability with a machine learning model trained on a code readability survey and an automatic containerization service that executes code files and warns users of reproducibility errors. This process helps ensure the reproducibility and readability of projects and therefore fast-track their verification and reuse.


翻译:研究和科学交流的一个重要部分是研究人员复制其他研究成果的能力。虽然作者提供数据和代码的标准越来越高,但其中许多档案难以在实践中重新执行,导致缺乏研究可复制性,这对同一领域的学生和研究人员来说是一个重大问题,他们无法利用以前公布的研究结果进行研究或进一步调查。为了解决这一问题,我们提议建立一个名为RE3的开放源平台,帮助改进涉及R代码的研究项目的可复制性和可读性。我们的平台包含评估代码的可读性,并有一个经过有关代码可读性调查培训的机器学习模型和一个自动集装箱化服务,执行代码文档,警告用户可复制错误。这一过程有助于确保项目的可复制性和可读性,从而加快项目核查和再利用。

0
下载
关闭预览

相关内容

一个旨在提升互联网阅读体验的工具。 readability.com/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员