This paper considers ranking inference of $n$ items based on the observed data on the top choice among $M$ randomly selected items at each trial. This is a useful modification of the Plackett-Luce model for $M$-way ranking with only the top choice observed and is an extension of the celebrated Bradley-Terry-Luce model that corresponds to $M=2$. Under a uniform sampling scheme in which any $M$ distinguished items are selected for comparisons with probability $p$ and the selected $M$ items are compared $L$ times with multinomial outcomes, we establish the statistical rates of convergence for underlying $n$ preference scores using both $\ell_2$-norm and $\ell_\infty$-norm, with the minimum sampling complexity. In addition, we establish the asymptotic normality of the maximum likelihood estimator that allows us to construct confidence intervals for the underlying scores. Furthermore, we propose a novel inference framework for ranking items through a sophisticated maximum pairwise difference statistic whose distribution is estimated via a valid Gaussian multiplier bootstrap. The estimated distribution is then used to construct simultaneous confidence intervals for the differences in the preference scores and the ranks of individual items. They also enable us to address various inference questions on the ranks of these items. Extensive simulation studies lend further support to our theoretical results. A real data application illustrates the usefulness of the proposed methods convincingly.
翻译:本文根据在每次试验中随机选定的最高选择美元项目中观察到的数据,考虑对美元项目进行排名。这是对Plackett-Luce 模型进行有用的修改,用于美元-线级,只有最高级选择才观察到,是著名的Bradley-Terri-Luce模型的延伸,该模型相当于$=2美元。在统一抽样办法下,选择任何美元特有项目进行概率比对,选定美元项目比对,用多数值结果比较,选定项目比对美元项目比对,因此,我们使用美元-美元-诺尔姆和美元-诺尔姆,对美元-诺姆的普尔特-Luce模型进行有益的修改。这是对最低抽样复杂性的Placket-Luctel-Luce模型的有益修改。此外,我们确定了最大可能性估算值的正常性,从而使我们能够为基本分数建立信任间隔。此外,我们提议了一个新的推论框架,通过复杂的最高对等差异统计,其分布通过一个有效的高估乘级靴带进一步估算。估计了美元优惠的分布。估计分配情况也用于了我们各个等级等级等级等级的等级的等级项目。它们之间的利差分析。这些等级分析结果,用以构建了我们各自的利差分析。这些分数的利差。用于了我们各自的利差分析。