Current bundle generation studies focus on generating a combination of items to improve user experience. In real-world applications, there is also a great need to produce bundle creatives that consist of mixture types of objects (e.g., items, slogans and templates) for achieving better promotion effect. We study a new problem named bundle creative generation: for given users, the goal is to generate personalized bundle creatives that the users will be interested in. To take both quality and efficiency into account, we propose a contrastive non-autoregressive model that captures user preferences with ingenious decoding objective. Experiments on large-scale real-world datasets verify that our proposed model shows significant advantages in terms of creative quality and generation speed.
翻译:目前的捆绑生成研究侧重于生成综合项目以改善用户经验。 在现实世界应用中,还非常需要生成由混合类型物体(如项目、口号和模板)组成的捆绑创意,以实现更好的促销效果。我们研究了一个名为捆绑型创意生成的新问题:对于特定用户来说,目标是生成用户感兴趣的个性化捆绑创意。为了将质量和效率都考虑在内,我们提议了一个对比性的非侵略性模型,该模型将用户的偏好与巧妙的解码目标结合起来。关于大规模现实世界数据集的实验证实,我们提议的模型在创造性质量和生成速度方面显示出巨大的优势。