This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally cellular automata where each orbit converges to some fixed point. Many examples studied in the literature fit into these definitions, in particular the works on cristal growth started by S. Ulam in the 60s. The central question addressed here is how the computational power and computational hardness of basic properties is affected by the constraints of convergence, bounded number of change, or local decreasing of states in each cell. By studying various benchmark problems (short-term prediction, long term reachability, limits) and considering various complexity measures and scales (LOGSPACE vs. PTIME, communication complexity, Turing computability and arithmetical hierarchy) we give a rich and nuanced answer: the overall computational complexity of such cellular automata depends on the class considered (among the three above), the dimension, and the precise problem studied. In particular, we show that all settings can achieve universality in the sense of Blondel-Delvenne-K\r{u}rka, although short term predictability varies from NLOGSPACE to P-complete. Besides, the computability of limit configurations starting from computable initial configurations separates bounded-change from convergent cellular automata in dimension 1, but also dimension 1 versus higher dimensions for freezing cellular automata. Another surprising dimension-sensitive result obtained is that nilpotency becomes decidable in dimension 1 for all the three classes, while it stays undecidable even for freezing cellular automata in higher dimension.
翻译:本文从计算角度研究三个细胞自动数据类别: 冻结细胞自动数据, 细胞自动数据状态只能根据各州的某种顺序降低; 细胞自动数据, 每个单元格只能使任何轨道的状态变化有一定数量, 最后是细胞自动数据, 每个轨道都聚集到某个固定点。 文献中研究的许多例子符合这些定义, 特别是 S. Ulam 在60年代开始的关于晶体增长的工程。 这里处理的中心问题是, 基本特性的计算精度和计算硬度如何受到下列因素的影响: 趋同、 变化的界限、 每个单元格的局部下降; 细胞自动数据状态, 每个单元格中, 每个单元格的固定状态变化数量, 以及每个单元格的固定数量。 通过研究各种基准问题( 短期预测、 长期可达度、 限制) 以及考虑各种复杂度和尺度( LOGSPACE 与 PTIME 、 通信复杂性、 调动可调和算术等级) 我们给出了一个丰富而细致的答案: 这种细胞自动变化的总体计算复杂性取决于所考虑的类别( 以上三个层面)、 、 度、 开始的精确度、 和精确度、 直径级的递增变的奥化的奥化的奥化、 性、 性、 性、 以及整个的奥化的奥化的奥化的内的所有设置都显示, 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 使整个- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 使整个- 度- 度- 使整个- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度-