This paper considers online object-level mapping using partial point-cloud observations obtained online in an unknown environment. We develop and approach for fully Convolutional Object Retrieval and Symmetry-AIded Registration (CORSAIR). Our model extends the Fully Convolutional Geometric Features model to learn a global object-shape embedding in addition to local point-wise features from the point-cloud observations. The global feature is used to retrieve a similar object from a category database, and the local features are used for robust pose registration between the observed and the retrieved object. Our formulation also leverages symmetries, present in the object shapes, to obtain promising local-feature pairs from different symmetry classes for matching. We present results from synthetic and real-world datasets with different object categories to verify the robustness of our method.
翻译:本文利用在未知环境中通过在线部分点心观测获得的不为人知的环境中的局部点心观测来考虑在线目标水平映射。 我们开发了全面进化物体检索和对称独立登记(CorsAIR)并采取了全面进化几何特征模型(CORSAIR ) 。 我们的模型扩展了全进化几何特征模型, 以学习全球对象形状的嵌入, 以及点心观测中的地方点点特征。 全球特征用于从分类数据库中检索类似对象, 本地特征用于在被观测到的物体和被检索到的物体之间进行稳健的注册。 我们的配方还利用了在对象形状中的对称, 以获得不同对称类别的有希望的本地匹配配对。 我们展示了不同对象类别的合成和真实世界数据集的结果,以验证我们方法的稳健性。