This paper focuses on the numerical approximation of random lattice reversible Selkov systems. It establishes the existence of numerical invariant measures for random models with nonlinear noise, using the backward Euler-Maruyama (BEM) scheme for time discretization. The study examines both infinite dimensional discrete random models and their corresponding finite dimensional truncations. A classical path convergence technique is employed to demonstrate the convergence of the invariant measures of the BEM scheme to those of the random lattice reversible Selkov systems. As the discrete time step size approaches zero, the invariant measure of the random lattice reversible Selkov systems can be approximated by the numerical invariant measure of the finite dimensional truncated systems.
翻译:本文研究随机格点可逆Selkov系统的数值逼近问题。针对含非线性噪声的随机模型,采用后向欧拉-丸山(BEM)格式进行时间离散,建立了数值不变测度的存在性。研究同时考察了无限维离散随机模型及其对应的有限维截断系统。通过经典路径收敛技术,证明了BEM格式的不变测度收敛于随机格点可逆Selkov系统的不变测度。当离散时间步长趋近于零时,随机格点可逆Selkov系统的不变测度可由有限维截断系统的数值不变测度进行逼近。