Identification of a linear time-invariant dynamical system from partial observations is a fundamental problem in control theory. A natural question is how to do so with non-asymptotic statistical rates depending on the inherent dimensionality (order) $d$ of the system, rather than on the sufficient rollout length or on $\frac1{1-\rho(A)}$, where $\rho(A)$ is the spectral radius of the dynamics matrix. We develop the first algorithm that given a single trajectory of length $T$ with gaussian observation noise, achieves a near-optimal rate of $\widetilde O\left(\sqrt\frac{d}{T}\right)$ in $\mathcal{H}_2$ error for the learned system. We also give bounds under process noise and improved bounds for learning a realization of the system. Our algorithm is based on low-rank approximation of Hankel matrices of geometrically increasing sizes.
翻译:从部分观测中确定线性时变动态系统是控制理论中的一个基本问题。一个自然的问题是,如何根据系统的内在维度(顺序)美元,而不是根据足够的推出长度或$\frac1{{1-rho(A)}美元,其中$\rho(A)美元是动态矩阵的光谱半径。我们开发了第一个算法,该算法给出了一个长度为$T的单轨距,带有粗野观测噪声,从而达到接近最佳的O\\\\\\全方位(sqrt\frac{d ⁇ _T ⁇ right)美元率,用于学习系统。我们还在噪声过程下给出界限,并改进了了解系统实现的界限。我们的算法以几何大小增长的汉克尔矩阵的低近似近值为基础。