The literature on data sanitization aims to design algorithms that take an input dataset and produce a privacy-preserving version of it, that captures some of its statistical properties. In this note we study this question from a streaming perspective and our goal is to sanitize a data stream. Specifically, we consider low-memory algorithms that operate on a data stream and produce an alternative privacy-preserving stream that captures some statistical properties of the original input stream.


翻译:关于数据净化的文献旨在设计一种算法,这种算法采用输入数据集,并产生一种保存隐私的版本,以捕捉其某些统计属性。在本说明中,我们从流的角度来研究这一问题,我们的目标是使数据流净化。具体地说,我们考虑在数据流上运作的低模算法,并产生一种替代的保存隐私的流,以捕捉原始输入流的一些统计属性。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2019年9月10日
Arxiv
0+阅读 · 2022年1月28日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年9月10日
Top
微信扫码咨询专知VIP会员