This paper investigates the transmission design in the reconfigurable-intelligent-surface (RIS)-assisted downlink system. The channel state information (CSI) is usually difficult to be estimated at the base station (BS) when the RIS is not equipped with radio frequency chains. In this paper, we propose a downlink transmission framework with unknown CSI via Bayesian optimization. Since the CSI is not available at the BS, we treat the unknown objective function as the black-box function and take the beamformer, the phase shift, and the receiving filter as the input. Then the objective function is decomposed as the sum of low-dimension subfunctions to reduce the complexity. By re-expressing the power constraint of the BS in spherical coordinates, the original constraint problem is converted into an equivalent unconstrained problem. The users estimate the sum MSE of the training symbols as the objective value and feed it back to the BS. We assume a Gaussian prior of the feedback samples and the next query point is updated by minimizing the constructed acquisition function. Furthermore, this framework can also be applied to the power transfer system and fairness problems. Simulation results validate the effectiveness of the proposed transmission scheme in the downlink data transmission and power transfer.
翻译:本文调查了重新配置智能表面辅助下行链路系统中的传输设计。 当 RIS没有配备无线电频率链时, 频道状态信息通常很难在基站上估计。 在本文中, 我们提议通过 Bayesian 优化, 使用未知 CSI 的下链接传输框架。 由于 BS 无法使用 CSI, 我们将未知目标功能作为黑盒功能, 并将光标、 相位转换和接收过滤器作为输入。 然后, 目标函数会分解为低调子功能之和, 以减少复杂性。 通过在球坐标中重新表达 BS 的动力限制, 原始约束性问题会转换成类似的未受限制的问题。 由于 BSS 用户估计培训符号的总和 MSE 作为目标值, 并把它反馈到 BS 。 我们假设在输入样本之前是高斯, 下一个查询点会通过尽量减少构建的获取功能来更新 。 此外, 这个框架还可以应用到电源传输系统的效率传输和Sim 问题 。