We build boolean circuits of size $O(nm^2)$ and depth $O(\log(n) + m \log(m))$ for sorting $n$ integers each of $m$-bits. We build also circuits that sort $n$ integers each of $m$-bits according to their first $k$ bits that are of size $O(nmk(1 + \log^*(n) - \log^*(m)))$ and depth $O(\log^{3} n)$. This improves on the result of Asharov et al. arXiv:2010.09884 and resolves some of their open questions.
翻译:我们建造的布林电路大小为$O(nm ⁇ 2)$和深度为$O(log(n) + m\log(m))$,用于对每张美元-位元的整数进行排序。我们还建造了电路,根据大小为$(nmk)(1+\log ⁇ (n))$和深度为$O(log)+ m\log(m))$的每张美元/位元的整数进行排序。根据Asharov等人的ArXiv:2010.09884的结果,这改进了每张美元-位元的整数,并解决了其中一些公开的问题。