In this paper, we propose the realized Hyperbolic GARCH model for the joint-dynamics of lowfrequency returns and realized measures that generalizes the realized GARCH model of Hansen et al.(2012) as well as the FLoGARCH model introduced by Vander Elst (2015). This model is sufficiently flexible to capture both long memory and asymmetries related to leverage effects. In addition, we will study the strictly and weak stationarity conditions of the model. To evaluate its performance, experimental simulations, using the Monte Carlo method, are made to forecast the Value at Risk (VaR) and the Expected Shortfall (ES). These simulation studies show that for ES and VaR forecasting, the realized Hyperbolic GARCH (RHYGARCH-GG) model with Gaussian-Gaussian errors provide more adequate estimates than the realized Hyperbolic GARCH model with student- Gaussian errors.
翻译:在本文中,我们提出了已实现的低频回报联合动力学超双曲GARCH模型,并提出了推广已实现的Hansen等人(2012年)的GARCH模型和Vander Elst(2015年)采用的FLOGARCH模型的已实现的低频回报率超光速GARCH模型,该模型具有足够的灵活性,可以同时反映与杠杆效应有关的长期记忆性和不对称性。此外,我们将研究该模型的严格和薄弱的定点性条件。为了评估其性能,使用蒙特卡洛法进行了实验性模拟,以预测风险值(VaR)和预期缺漏(ES)。这些模拟研究表明,在ES和VaR预报方面,已实现的高斯-高斯-高斯错误高斯-高斯差(RHYHGARCH-GGG)模型提供了比已实现的高斯错误高斯/高斯差的超偏心GARCHH模型更充分的估计数。