This paper studies the uplink spectral efficiency (SE) achieved by two single-antenna user equipments (UEs) communicating with a Large Intelligent Surface (LIS), defined as a planar array consisting of $N$ antennas that each has area $A$. The analysis is carried out with a deterministic line-of-sight propagation channel model that captures key fundamental aspects of the so-called geometric near-field of the array. Maximum ratio (MR) and minimum mean squared error (MMSE) combining schemes are considered. With both schemes, the signal and interference terms are numerically analyzed as a function of the position of the transmitting devices when the width/height $L = \sqrt{NA}$ of the square-shaped array grows large. The results show that an exact near-field channel model is needed to evaluate the SE whenever the distance of transmitting UEs is comparable with the LIS' dimensions. It is shown that, if $L$ grows, the UEs are eventually in the geometric near-field and the interference does not vanish. MMSE outperforms MR for an LIS of practically large size.


翻译:本文研究两个单层用户设备(UES)与大型智能表面(LIS)通信的上链光谱效率(SE),该设备的定义是,由每台天线的面积为$A美元组成的平面阵列。分析是用一种确定性的直线观测信道模型进行的,该模型捕捉了所谓的阵列近场几何阵列的关键基本方面。考虑的是最大比率(MR)和最小平均正方差(MMSE)组合办法。在两种办法下,信号和干扰条件都以数字方式分析,作为在正方形阵列宽度/高度为8美元=\sqrt{NA}美元大幅增长时传输装置位置的函数。结果显示,只要传输电子的距离与 LIS 尺寸相当,就需要有一个精确的近场通道模型来评价SE。显示,如果$L$增长,US最终将处于近场的几何位置,干扰不会消失。MMSE超过MRMR,用于一个实际大小的LIS。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
35+阅读 · 2020年9月3日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员