The analysis of data in which multiple languages are represented has gained popularity among computational linguists in recent years. So far, much of this research focuses mainly on the improvement of computational methods and largely ignores linguistic and social aspects of C-S discussed across a wide range of languages within the long-established literature in linguistics. To fill this gap, we offer a survey of code-switching (C-S) covering the literature in linguistics with a reflection on the key issues in language technologies. From the linguistic perspective, we provide an overview of structural and functional patterns of C-S focusing on the literature from European and Indian contexts as highly multilingual areas. From the language technologies perspective, we discuss how massive language models fail to represent diverse C-S types due to lack of appropriate training data, lack of robust evaluation benchmarks for C-S (across multilingual situations and types of C-S) and lack of end-to-end systems that cover sociolinguistic aspects of C-S as well. Our survey will be a step towards an outcome of mutual benefit for computational scientists and linguists with a shared interest in multilingualism and C-S.


翻译:最近几年,计算语言学家对多种语言数据的分析越来越受计算语言学家的欢迎,迄今为止,许多这类研究主要侧重于改进计算方法,并在很大程度上忽略了语言文献中长期存在的多种语言中讨论的C-S语言的语言和社会方面。为填补这一空白,我们对语言文献的编码转换(C-S)进行了调查,对语言技术的关键问题进行了反思。从语言角度看,我们概述了C-S的结构和功能模式,侧重于来自欧洲和印度背景的文献,将其作为高度多语言领域。从语言技术角度看,我们讨论了由于缺乏适当的培训数据、C-S(跨多种语言情况和C-S类型)缺乏可靠的评价基准以及缺乏涵盖C-S社会语言方面的端对端系统,大规模语言模式无法代表多种C-S类型语言。我们的调查将是朝着计算科学家和语言学家相互受益的结果迈出的一步,因为他们对多种语言和C-S有着共同的兴趣。

0
下载
关闭预览

相关内容

计算语言学(Computational Linguistics)是历史最悠久的出版物,专门研究语言的计算和数学特性以及自然语言处理系统的设计和分析。这本备受推崇的季刊为大学和工业界的语言学家、计算语言学家、人工智能和机器学习研究者、认知科学家、语言专家和哲学家提供有关语言研究各个方面的计算方面的最新信息。 官网地址:http://dblp.uni-trier.de/db/journals/coling/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月3日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员