Conventional planar video streaming is the most popular application in mobile systems and the rapid growth of 360 video content and virtual reality (VR) devices are accelerating the adoption of VR video streaming. Unfortunately, video streaming consumes significant system energy due to the high power consumption of the system components (e.g., DRAM, display interfaces, and display panel) involved in this process. We propose BurstLink, a novel system-level technique that improves the energy efficiency of planar and VR video streaming. BurstLink is based on two key ideas. First, BurstLink directly transfers a decoded video frame from the host system to the display panel, bypassing the host DRAM. To this end, we extend the display panel with a double remote frame buffer (DRFB), instead of the DRAM's double frame buffer, so that the system can directly update the DRFB with a new frame while updating the panel's pixels with the current frame stored in the DRFB. Second, BurstLink transfers a complete decoded frame to the display panel in a single burst, using the maximum bandwidth of modern display interfaces. Unlike conventional systems where the frame transfer rate is limited by the pixel-update throughput of the display panel, BurstLink can always take full advantage of the high bandwidth of modern display interfaces by decoupling the frame transfer from the pixel update as enabled by the DRFB. This direct and burst frame transfer of BurstLink significantly reduces energy consumption in video display by reducing access to the host DRAM and increasing the system's residency at idle power states. We evaluate BurstLink using an analytical power model that we rigorously validate on a real modern mobile system. Our evaluation shows that BurstLink reduces system energy consumption for 4K planar and VR video streaming by 41% and 33%, respectively.


翻译:常规平流视频流是移动系统中最受欢迎的应用,360个视频内容和虚拟现实(VR)装置的快速增长正在加速采用 VR 视频流。 不幸的是,视频流消耗了大量系统能量,因为在此过程中所涉及的系统组件(如DRAM、显示界面和显示面板)的电耗很高。 我们提议了BurstLink, 这是一种创新的系统级技术, 提高平流和VR 视频流流的能效。 BurstLink基于两个关键理念。 首先, BurstLink 直接将一个解码视频框架从主机系统转到显示板, 绕过主机 DRAM 。 至此, 我们延长了显示面板, 而不是 DRAM 的双框缓冲。 这样, 系统可以直接更新 DRFBB, 同时用储存在 DRFB B 4 的当前框架更新。 其次, BurstLink 将一个完整的解码框架传输到显示显示显示显示面板的系统, 使用最高级显示的显示器显示器显示器显示器显示器显示器显示器显示器显示器显示器显示器显示器显示器显示器显示器的最大节流的系统, 。

0
下载
关闭预览

相关内容

【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
45+阅读 · 2021年9月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
19+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
3+阅读 · 2012年11月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员