We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events. The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration. The fault diagnosis module uses model-based diagnosis algorithms to detect and isolate faults and generates interventions in the system to disambiguate uncertain diagnosis solutions. We scale up the fault diagnosis algorithm to the required real-time performance through the use of parallelization and surrogate models of the physics-based digital twin. The prognostics module tracks the fault progressions and trains the online degradation models to compute remaining useful life of system components. In addition, we use the degradation models to assess the impact of the fault progression on the operational requirements. The reconfiguration module uses PDDL-based planning endowed with semantic attachments to adjust the system controls so that the fault impact on the system operation is minimized. We define a resilience metric and use the example of a fuel system model to demonstrate how the metric improves with our framework.
翻译:我们展示了一个端到端框架,以提高人为系统对意外事件的抗御能力。框架基于基于物理学的数字双向模型和三个模块,分别负责实时断层诊断、预知和重组。断层诊断模块使用基于模型的诊断算法来检测和分离断层,并在系统中生成干预措施以排除不确定的诊断解决方案。我们通过使用基于物理的数字双对平行和代用模型,将断层诊断算法提高到所需的实时性能。预知模块跟踪断层进展,并培训在线降解模型以计算系统元件的剩余使用寿命。此外,我们利用退化模型评估断层进展对操作要求的影响。重组模块使用基于断层的配置模型规划来调整系统控制,从而最大限度地减少对系统操作的断层影响。我们定义了复原力计量方法,并使用燃料系统模型的范例来说明该计量方法如何改进我们的框架。