In this paper, we study whether inexpensive, physics-free supervision can reliably prioritize grasp-place candidates for budget-aware pick-and-place. From an object's initial pose, target pose, and a candidate grasp, we generate two path-aware geometric labels: path-wise inverse kinematics (IK) feasibility across a fixed approach-grasp-lift waypoint template, and a transit collision flag from mesh sweeps along the same template. A compact dual-output MLP learns these signals from pose encodings, and at test time its scores rank precomputed candidates for a rank-then-plan policy under the same IK gate and planner as the baseline. Although learned from cheap labels only, the scores transfer to physics-enabled executed trajectories: at a fixed planning budget the policy finds successful paths sooner with fewer planner calls while keeping final success on par or better. This work targets a single rigid cuboid with side-face grasps and a fixed waypoint template, and we outline extensions to varied objects and richer waypoint schemes.
翻译:本文研究能否通过廉价、无物理监督的方式可靠地为预算感知的拾放任务优先选择抓取-放置候选方案。我们根据物体的初始位姿、目标位姿及候选抓取姿态,生成两个路径感知的几何标签:基于固定“接近-抓取-提升”路点模板的路径级逆运动学可行性,以及沿相同模板进行网格扫描得到的转移碰撞标志。一个紧凑的双输出多层感知机从位姿编码中学习这些信号,在测试时,其评分用于对预计算的候选方案进行排序,形成“先排序后规划”策略,该策略采用与基线相同的逆运动学门控和规划器。尽管仅从廉价标签中学习,这些评分能够迁移到启用物理仿真的执行轨迹:在固定规划预算下,该策略能以更少的规划器调用次数更快找到成功路径,同时保持最终成功率相当或更优。本工作针对具有侧面抓取点的单个刚性长方体及固定路点模板,并概述了向多样化物体及更丰富路点方案的扩展方向。