Designing networks to optimize robustness and other performance metrics is a well-established problem with applications ranging from electrical engineering to communication networks. Many such performance measures rely on the Laplacian spectrum; notable examples include total effective resistance, the number of spanning trees, and algebraic connectivity. This paper advances the study of Laplacian-based network optimization by drawing on ideas from experimental design in statistics. We present a theoretical framework for analyzing performance measures by introducing the notion of information functions, which captures a set of their desirable properties. Then, we formulate a new parametric family of information functions, Kiefer's measures, which encompasses the three most common spectral objectives. We provide a regular reformulation of the Laplacian optimization problem, and we use this reformulation to compute directional derivatives of Kiefer's measures. The directional derivatives provide a unified treatment of quantities recurring in Laplacian optimization, such as gradients and subgradients, and we show that they are connected to Laplacian-based measures of node distance, which we call node dissimilarities. We apply the node dissimilarities to derive efficient rank-one update formulas for Kiefer's criteria, and to devise a new edge-exchange method for network optimization. These update formulas enable greedy and exchange algorithms with reduced asymptotic time complexity.


翻译:设计网络以优化鲁棒性及其他性能指标是一个成熟的研究问题,其应用范围涵盖电气工程至通信网络。许多此类性能度量依赖于拉普拉斯谱;典型例子包括总有效电阻、生成树数目和代数连通度。本文通过借鉴统计学中实验设计的思路,推进了基于拉普拉斯的网络优化研究。我们通过引入信息函数的概念提出了分析性能度量的理论框架,该概念刻画了这类度量的一系列理想性质。随后,我们构建了一个新的参数化信息函数族——Kiefer度量,该族涵盖了三种最常见的谱目标函数。我们给出了拉普拉斯优化问题的正则重构形式,并利用该重构计算了Kiefer度量的方向导数。方向导数为拉普拉斯优化中反复出现的量(如梯度和次梯度)提供了统一处理方式,并证明其与基于拉普拉斯的节点距离度量(我们称之为节点相异性)相关联。我们应用节点相异性推导了Kiefer准则的高效秩一更新公式,并设计了一种新的网络优化边交换方法。这些更新公式使得贪心算法与交换算法能够以更低的时间复杂度渐近实现。

0
下载
关闭预览

相关内容

144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
48+阅读 · 11月21日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员