Finding translational biomarkers stands center stage of the future of personalized medicine in healthcare. We observed notable challenges in identifying robust biomarkers as some with great performance in one scenario often fail to perform well in new trials (e.g. different population, indications). With rapid development in the clinical trial world (e.g. assay, disease definition), new trials very likely differ from legacy ones in many perspectives and in development of biomarkers this heterogeneity should be considered. In response, we recommend considering building in the heterogeneity when evaluating biomarkers. In this paper, we present one evaluation strategy by using leave-one-study-out (LOSO) in place of conventional cross-validation (cv) methods to account for the potential heterogeneity across trials used for building and testing the biomarkers. To demonstrate the performance of K-fold vs LOSO cv in estimating the effect size of biomarkers, we leveraged data from clinical trials and simulation studies. In our assessment, LOSO cv provided a more objective estimate of the future performance. This conclusion remained true across different evaluation metrics and different statistical methods.
翻译:发现翻译生物标志物是保健中个性化医学未来的核心阶段。我们注意到在确定强健的生物标志物方面存在着显著挑战,因为在一种情景中,一些在一种情景中表现出色的生物标志物往往在新的试验中表现不佳(例如不同的人口,指标)。随着临床试验世界的迅速发展(例如,化验、疾病定义),新的试验极有可能与许多方面遗留下来的试验和生物标志的开发不同。应考虑这种异质性。作为回应,我们建议在评估生物标志物时考虑在异质性中建立生物标志物。我们在本文件中提出了一种评价战略,即用常规的交叉验证(cv)方法来说明用于建造和测试生物标志物的各种试验的潜在异质性。为了证明K-fold vs LOSocv在估计生物标志物的影响大小方面的表现,我们利用了临床试验和模拟研究中的数据。在评估中,LOSocv提供了对未来业绩的更客观的估计。这一结论在不同的评价指标和统计方法中仍然正确。