Recent advances in linguistic steganalysis have successively applied CNN, RNN, GNN and other efficient deep models for detecting secret information in generative texts. These methods tend to seek stronger feature extractors to achieve higher steganalysis effects. However, we have found through experiments that there actually exists significant difference between automatically generated stego texts and carrier texts in terms of the conditional probability distribution of individual words. Such kind of difference can be naturally captured by the language model used for generating stego texts. Through further experiments, we conclude that this ability can be transplanted to a text classifier by pre-training and fine-tuning to improve the detection performance. Motivated by this insight, we propose two methods for efficient linguistic steganalysis. One is to pre-train a language model based on RNN, and the other is to pre-train a sequence autoencoder. The results indicate that the two methods have different degrees of performance gain compared to the randomly initialized RNN, and the convergence speed is significantly accelerated. Moreover, our methods achieved the best performance compared to related works, while providing a solution for real-world scenario where there are more cover texts than stego texts.


翻译:在语言学分析方面最近的进展相继应用了CNN、RNN、GNN和其他高效的深度模型,以探测基因化文本中的机密信息,这些方法往往寻求更强的特征提取器,以达到更高的分解效果。然而,我们通过实验发现,在单词的有条件概率分布方面,自动生成的stego文本和承运人文本之间实际上存在很大差异。这种差异可以自然地通过生成stego文本所使用的语言模型来捕捉。通过进一步试验,我们得出结论,这种能力可以通过培训前和微调移植到文本分类器上,以提高探测性能。我们受这一洞察的启发,我们提出了两种高效的语言分解方法。一种是预先开发基于RNN的语文模型,另一种是预先配置一个自动编码的顺序。结果显示,这两种方法的性能收益与随机初始化的RNNN值不同,而趋同速度则大大加快。此外,我们的方法与相关作品相比,取得了最佳的性能,同时为现实世界情景提供了一种解决办法,因为其中的文本比文本覆盖得更多。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员