Big data analytics in cloud environments introduces challenges such as real-time load balancing besides security, privacy, and energy efficiency. In this paper, we propose a novel load balancing algorithm in cloud environments that performs resource allocation and task scheduling efficiently. The proposed load balancer reduces the execution response time in big data applications performed on clouds. Scheduling, in general, is an NP-hard problem. In our proposed algorithm, we provide solutions to reduce the search area that leads to reduced complexity of the load balancing. We recommend two mathematical optimization models to perform dynamic resource allocation to virtual machines and task scheduling. The provided solution is based on the hill-climbing algorithm to minimize response time. We evaluate the performance of proposed algorithms in terms of response time, turnaround time, throughput metrics, and request distribution with some of the existing algorithms that show significant improvements


翻译:云层环境中的大数据分析学提出了挑战,例如,除了安全、隐私和能源效率之外,实时负载平衡、安全、隐私和能源效率。本文中,我们提议在云层环境中采用新的负负平衡算法,以高效地进行资源分配和任务时间安排。拟议的负负平衡法减少了在云层上应用的大数据应用程序的执行反应时间。一般而言,排程是一个NP硬问题。在我们拟议的算法中,我们提供了减少搜索区域的解决办法,从而减少了负载平衡的复杂性。我们建议了两种数学优化模型,以对虚拟机器和任务时间安排进行动态资源分配。我们提供的解决办法是以山坡式算法为基础,以尽量减少反应时间。我们从反应时间、周转时间、吞吐量量等角度评估了拟议算法的运作情况,并要求与一些显示重大改进的现有算法进行分配。

0
下载
关闭预览

相关内容

【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
96+阅读 · 2019年12月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月17日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员