Prior work on sentiment analysis using weak supervision primarily focuses on different reviews such as movies (IMDB), restaurants (Yelp), products (Amazon).~One under-explored field in this regard is customer chat data for a customer-agent chat in customer support due to the lack of availability of free public data. Here, we perform sentiment analysis on customer chat using weak supervision on our in-house dataset. We fine-tune the pre-trained language model (LM) RoBERTa as a sentiment classifier using weak supervision. Our contribution is as follows:1) We show that by using weak sentiment classifiers along with domain-specific lexicon-based rules as Labeling Functions (LF), we can train a fairly accurate customer chat sentiment classifier using weak supervision. 2) We compare the performance of our custom-trained model with off-the-shelf google cloud NLP API for sentiment analysis. We show that by injecting domain-specific knowledge using LFs, even with weak supervision, we can train a model to handle some domain-specific use cases better than off-the-shelf google cloud NLP API. 3) We also present an analysis of how customer sentiment in a chat relates to problem resolution.
翻译:先前利用薄弱的监管进行情绪分析的工作,主要侧重于不同的审查,如电影(IMDB)、餐馆(Yelp)、产品(Amazon)等。-在这方面,一个探索不足的领域是由于缺乏免费的公共数据,在客户支持方面,客户代理聊天的客户聊天数据。在这里,我们利用对内部数据集的监管薄弱,对客户聊天进行情绪分析。我们用薄弱的监督,微弱的监管,微弱地调整预先培训的语言模式(LM) RoBERTA作为情绪分类师。我们的贡献如下:1)我们显示,通过使用弱的情绪分类器以及以域特定词汇为基础的规则(Labeling 函数),我们可以在监管薄弱的情况下培训一个相当准确的客户聊天叙事员。 2)我们比较了我们所定制的模型的性能与现成的谷歌云NLP AP AP AP AP API 的情绪分析。我们通过使用LFs(即使在监管薄弱的情况下) 将特定域知识注入,我们可以训练一个模型,处理某些特定域使用的案例,而不是现成的谷洞云 NLPP AL AL IP 解的客户情绪。