Neuromorphic accelerators offer promising platforms for machine learning (ML) inference by leveraging event-driven, spatially-expanded architectures that naturally exploit unstructured sparsity through co-located memory and compute. However, their unique architectural characteristics create performance dynamics that differ fundamentally from conventional accelerators. Existing workload optimization approaches for neuromorphic accelerators rely on aggregate network-wide sparsity and operation counting, but the extent to which these metrics actually improve deployed performance remains unknown. This paper presents the first comprehensive performance bound and bottleneck analysis of neuromorphic accelerators, revealing the shortcomings of the conventional metrics and offering an understanding of what facets matter for workload performance. We present both theoretical analytical modeling and extensive empirical characterization of three real neuromorphic accelerators: Brainchip AKD1000, Synsense Speck, and Intel Loihi 2. From these, we establish three distinct accelerator bottleneck states, memory-bound, compute-bound, and traffic-bound, and identify which workload configuration features are likely to exhibit these bottleneck states. We synthesize all of our insights into the floorline performance model, a visual model that identifies performance bounds and informs how to optimize a given workload, based on its position on the model. Finally, we present an optimization methodology that combines sparsity-aware training with floorline-informed partitioning. Our methodology achieves substantial performance improvements at iso-accuracy: up to 3.86x runtime improvement and 3.38x energy reduction compared to prior manually-tuned configurations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员