Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a website's audience as a quality signal. Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards. We then incorporate audience diversity into a standard collaborative filtering framework and show that our improved algorithm increases the trustworthiness of websites suggested to users -- especially those who most frequently consume misinformation -- while keeping recommendations relevant. These findings suggest that partisan audience diversity is a valuable signal of higher journalistic standards that should be incorporated into algorithmic ranking decisions.
翻译:新闻算法经常扩大错误信息和其他低质量内容。 社交媒体平台如何能更有效地促进可靠信息? 现有方法难以推广,而且容易被操纵。 在本文中,我们提议利用网站受众的政治多样性作为质量信号。 利用域专家的新闻来源可靠性评级和从6 890名美国公民的不同样本中浏览网络数据,我们首先显示,受众更加极端、政治上较少的网站新闻标准较低。 然后,我们将受众多样性纳入标准的合作过滤框架,并显示我们改进的算法提高了向用户建议的网站的可信度,特别是最经常使用错误信息的网站,同时保持建议的相关性。 这些调查结果表明,党派受众多样性是应当纳入算法排名决策的更高新闻标准的宝贵信号。