As the field of recommender systems has developed, authors have used a myriad of notations for describing the mathematical workings of recommendation algorithms. These notations ap-pear in research papers, books, lecture notes, blog posts, and software documentation. The dis-ciplinary diversity of the field has not contributed to consistency in notation; scholars whose home base is in information retrieval have different habits and expectations than those in ma-chine learning or human-computer interaction. In the course of years of teaching and research on recommender systems, we have seen the val-ue in adopting a consistent notation across our work. This has been particularly highlighted in our development of the Recommender Systems MOOC on Coursera (Konstan et al. 2015), as we need to explain a wide variety of algorithms and our learners are not well-served by changing notation between algorithms. In this paper, we describe the notation we have adopted in our work, along with its justification and some discussion of considered alternatives. We present this in hope that it will be useful to others writing and teaching about recommender systems. This notation has served us well for some time now, in research, online education, and traditional classroom instruction. We feel it is ready for broad use.
翻译:随着推荐人系统的发展,作者们在描述推荐人算法的数学工作时使用了各种各样的符号。在研究论文、书籍、演讲笔记、博客文章和软件文档中,这些符号都非常尖锐。 该领域的分流多样性并没有促进记号的一致性; 信息检索中家庭基础的学者的习惯和期望不同于机器学习或人-计算机互动方面的习惯和期望。 在对推荐人系统进行多年的教学和研究过程中,我们看到我们在工作中采用一致的记号,这特别突出地体现在我们开发的关于Cournra(Konstan等人,2015年)的“建议人系统 MOOC ” 中,因为我们需要解释各种各样的算法,而我们的学习者没有通过改变记号得到很好的服务。 在本文中,我们描述了我们在工作中采用的记号,以及它的理由和一些经过考虑的替代方法的讨论。我们提出这一点是希望它能对其他人写和教授推荐人系统有所帮助。这在我们开发“Proteer Systemal Systems”(Kon and al.2015年)的过程中特别突出,因为我们需要解释各种算法,现在我们很愿意在课堂上进行广泛的教学。