The service rate region (SRR) has emerged as a critical performance metric for distributed systems that store data redundantly. It measures the system's ability to serve multiple users concurrently. Mathematically, the SRR is a polytope in R^k where each dimension corresponds to the service request rate of one of the k data objects. This paper focuses on systems employing a class of Maximum Distance Separable (MDS) codes. For each code in the class, we characterize the k axes intercept points of its SRR, and the smallest standard simplex that includes the SRR. We use these results to show that the SRR grows with the increasing number of systematic columns in the generator matrices. We establish a graph-theoretic framework associating this SRR problem with fractional matchings in quasi-uniform hypergraphs. Identifying the SRR polytope is equivalent to determining a particular image of the fractional-matching polytope. We introduce a notion of Greedy Matching and show that it is sufficient to focus on these matchings to characterize the SRR rather than the entire matching polytope. With these tools, we determine the SRR of a large subset of the considered class of codes. Our results generalize previous characterizations of systematic and non-systematic MDS-coded systems, offering a unified framework for analyzing service rate regions of codes.


翻译:服务速率区域已成为衡量冗余存储分布式系统性能的关键指标,它表征系统同时服务多用户的能力。在数学上,服务速率区域是R^k空间中的一个多面体,其中每个维度对应k个数据对象中某一对象的服务请求速率。本文聚焦于采用一类最大距离可分码的系统。针对该类中的每个编码,我们刻画了其服务速率区域的k个坐标轴截距点,以及包含该区域的最小标准单纯形。利用这些结果,我们证明服务速率区域随生成矩阵中系统列数量的增加而扩大。我们建立了一个图论框架,将该服务速率区域问题与拟一致超图中的分数匹配相关联。确定服务速率区域多面体等价于求解分数匹配多面体的特定像。我们引入了贪婪匹配的概念,并证明仅需关注这类匹配即可刻画服务速率区域,而无需考察整个匹配多面体。借助这些工具,我们确定了所研究编码类中一大子集的服务速率区域。我们的结果推广了先前对系统性与非系统性MDS编码系统的刻画,为分析编码的服务速率区域提供了统一框架。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员