Let $\mathcal{H}=(X,\mathcal{E})$ be a hypergraph. A support is a graph $Q$ on $X$ such that for each $E\in\mathcal{E}$, the subgraph of $Q$ induced on the elements in $E$ is connected. In this paper, we consider hypergraphs defined on a host graph. Given a graph $G=(V,E)$, with $c:V\to\{\mathbf{r},\mathbf{b}\}$, and a collection of connected subgraphs $\mathcal{H}$ of $G$, a primal support is a graph $Q$ on $\mathbf{b}(V)$ such that for each $H\in \mathcal{H}$, the induced subgraph $Q[\mathbf{b}(H)]$ on vertices $\mathbf{b}(H)=H\cap c^{-1}(\mathbf{b})$ is connected. A \emph{dual support} is a graph $Q^*$ on $\mathcal{H}$ s.t. for each $v\in X$, the induced subgraph $Q^*[\mathcal{H}_v]$ is connected, where $\mathcal{H}_v=\{H\in\mathcal{H}: v\in H\}$. We present sufficient conditions on the host graph and hyperedges so that the resulting support comes from a restricted family. We primarily study two classes of graphs: $(1)$ If the host graph has genus $g$ and the hypergraphs satisfy a topological condition of being \emph{cross-free}, then there is a primal and a dual support of genus at most $g$. $(2)$ If the host graph has treewidth $t$ and the hyperedges satisfy a combinatorial condition of being \emph{non-piercing}, then there exist primal and dual supports of treewidth $O(2^t)$. We show that this exponential blow-up is sometimes necessary. As an intermediate case, we also study the case when the host graph is outerplanar. Finally, we show applications of our results to packing and covering, and coloring problems on geometric hypergraphs.
翻译:设 $\mathcal{H}=(X,\mathcal{E})$ 为一个超图。支持是指一个图 $Q$ 在 $X$ 上,使得对于每个 $E\in\mathcal{E}$,在 $Q$ 中所定义的子图所有元素在 $E$ 中都是相连的。在这篇论文中,我们考虑在一个宿主图上定义的超图。给定一个图 $G=(V,E)$,其中 $c:V\to\{\mathbf{r},\mathbf{b}\}$,以及 $G$ 的一组连通子图 $\mathcal{H}$,一个原始支持是在 $\mathbf{b}(V)$ 上的一张图 $Q$,使得对于每个 $H\in \mathcal{H}$,在由$\mathbf{b}(H)=H\cap c^{-1}(\mathbf{b})$ 定义的顶点处,诱导的子图 $Q[\mathbf{b}(H)]$ 是连通的。一个双向支持是一个图 $Q^*$,在 $\mathcal{H}$ 上使得对于每个 $v\in X$,诱导的子图 $Q^*[\mathcal{H}_v]$ 是连通的,其中 $\mathcal{H}_v=\{H\in\mathcal{H}: v\in H\}$。我们提供了足够条件,这些条件适用于主机图和超边,得到的支持来自于受限族。我们主要研究两类图:$(1)$ 如果主机图的亏格为 $g$,并且超图满足不能横穿的数据结构,则存在亏格不超过 $g$ 的原始和双向支持。$(2)$ 如果主机图的树宽为 $t$,并且超边满足非穿透条件,则存在树宽为 $O(2^t)$ 的原始和双向支持。我们证明了这种指数级的激增有时是必要的。在中间情况下,我们还研究了主机图是外平面图的情况。最后,我们展示了我们的结果在几何超图的打包、覆盖和着色问题上的应用。