As photovoltaic (PV) penetration continues to rise and smart inverter functionality continues to expand, smart inverters and other distributed energy resources (DERs) will play increasingly important roles in distribution system power management and security. In this paper, it is demonstrated that a constellation of smart inverters in a simulated distribution circuit can enable precise voltage predictions using an asynchronous and decentralized prediction algorithm. Using simulated data and a constellation of 15 inverters in a ring communication topology, the COLA algorithm is shown to accomplish the learning task required for voltage magnitude prediction with far less communication overhead than fully connected P2P learning protocols. Additionally, a dynamic stopping criterion is proposed that does not require a regularizer like the original COLA stopping criterion.
翻译:由于光电(PV)渗透率继续上升,智能反向功能继续扩大,智能反向功能和其他分布式能源资源(DERs)在分配系统电力管理和安全方面将发挥越来越重要的作用,在本文中表明,模拟分配电路中的智能反向器星座能够利用非同步和分散的预测算法进行精确的电压预测。利用模拟数据和环状通信地形中的15个反向器星座,COLA算法可以完成以远低于完全连接的P2P学习协议的通信管理费来预测电压级规模所需的学习任务。此外,还提议采用动态停止标准,不需要像原COLA停止标准那样的正规化器。