Sequential likelihood ratio testing is found to be most powerful in sequential studies with early stopping rules when grouped data come from the one-parameter exponential family. First, to obtain this elusive result, the probability measure of a group sequential design is constructed with support for all possible outcome events, as is useful for designing an experiment prior to having data. This construction identifies impossible events that are not part of the support. The overall probability distribution is dissected into stage specific components. These components are sub-densities of interim test statistics first described by Armitage, McPherson and Rowe (1969) that are commonly used to create stopping boundaries given an $\alpha$-spending function and a set of interim analysis times. Likelihood expressions conditional on reaching a stage are given to connect pieces of the probability anatomy together. The reduction of the support caused by the adoption of an early stopping rule induces sequential truncation (not nesting) in the probability distributions of possible events. Multiple testing induces mixtures on the adapted support. Even asymptotic distributions of inferential statistics are mixtures of truncated distributions. In contrast to the classical result on local asymptotic normality (Le Cam 1960), statistics that are asymptotically normal without stopping options have asymptotic distributions that are mixtures of truncated normal distributions under local alternatives with stopping options; under fixed alternatives, asymptotic distributions of test statistics are degenerate.


翻译:序列概率比测试被认为在序列研究中最为强大。 当一组数据来自一参数指数式组群时, 以早期停止规则进行顺序研究时, 当一组数据来自一参数指数式组。 首先, 要获得这一难以捉摸的结果, 组顺序设计的概率测量是在支持所有可能的结果事件的情况下构建的, 这对于设计数据前的实验是有用的。 此构造确定了不属于支持部分的不可能的事件 。 总概率分布被分解为阶段特定组成部分。 这些组成部分是临时测试统计数据的亚密度, 由Armitage、 McPherson和Rowe(1969年) 首次描述, 通常用于根据 $\ alpha$ 流函数和一套临时分析时间来创建停止边界 。 到达一个阶段时, 可能的结果是连接概率解剖分数的可能的概率片段。 多重测试在调整后, 即使推断统计数据的分布是固定的混合物, 通常的分布方式在1960年正常的周期性统计中是混合的。 典型的统计结果在1960年正常的递归中, 递归为固定分布, 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
96+阅读 · 2019年12月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月20日
Arxiv
1+阅读 · 2021年3月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员