Quasi-Newton methods are able to construct model of the objective function without needing second derivatives of the objective function. In large-scale optimization, when either forming or storing Hessian matrices are prohibitively expensive, quasi-Newton methods are often used in lieu of Newton's method because they make use of first-order information to approximate the true Hessian. Multipoint symmetric secant methods can be thought of as generalizations of quasi-Newton methods in that they have additional requirements on their approximation of the Hessian. Given an initial Hessian approximation, the multipoint symmetric secant (MSS) method generates a sequence of matrices using rank-2 updates. For practical reasons, up to now, the initialization has been a constant multiple of the identity matrix. In this paper, we propose a new limited-memory MSS method that allows for dense initializations. Numerical results on the CUTEst test problems suggest that the \small{MSS} method using a dense initialization outperforms the standard initialization. Numerical results also suggest that this approach is competitive with a basic L-SR1 trust-region method.
翻译:Qasi- Newton 方法能够构建目标函数的模型, 而不需要目标函数的第二个衍生物。 在大规模优化中, 当赫森基质的形成或储存极其昂贵时, 当赫森基质的形成或储存费用极高时, 以准牛顿方法取代牛顿方法时, 通常使用准牛顿方法, 因为它们使用第一阶信息来接近真正的赫森。 多点对称分离方法可以被视为准牛顿方法的一般化, 因为他们对赫森基值的近似有额外要求。 在最初的赫森近似情况下, 多点对称分离法( MSS) 生成了使用第二级更新的矩阵序列。 出于实际原因, 到目前为止, 初始化方法一直是身份矩阵的常数。 在本文中, 我们提出一种新的有限模量 MSS 方法, 允许密度初始化。 CUTEst 测试问题的数值结果显示, 使用密度初始化方法的 morm{MSS} 方法比标准初始化要强。 Nummericalalal 的结果还表明, 这一方法具有竞争力, 它具有基本的信任区域。