We propose a new penalty, named as the springback penalty, for constructing models to recover an unknown signal from incomplete and inaccurate measurements. Mathematically, the springback penalty is a weakly convex function, and it bears various theoretical and computational advantages of both the benchmark convex $\ell_1$ penalty and many of its non-convex surrogates that have been well studied in the literature. For the recovery model using the springback penalty, we establish the exact and stable recovery theory for both sparse and nearly sparse signals, respectively, and derive an easily implementable difference-of-convex algorithm. In particular, we show its theoretical superiority to some existing models with a sharper recovery bound for some scenarios where the level of measurement noise is large or the amount of measurements is limited, and demonstrate its numerical robustness regardless of varying coherence of the sensing matrix. Because of its theoretical guarantee of recovery with severe measurements, computational tractability, and numerical robustness for ill-conditioned sensing matrices, the springback penalty is particularly favorable for the scenario where the incomplete and inaccurate measurements are collected by coherence-hidden or -static sensing hardware.


翻译:我们建议一种新的惩罚,称为“回弹惩罚 ”, 用于构建模型以从不完整和不准确的测量中恢复未知信号的模型。 从数学角度讲,回弹惩罚是一个微弱的曲线函数,它具有各种理论和计算优势,既有基准的曲线,有1美元罚款,也有文献中研究过的许多非碳酸盐替代物。对于使用回弹惩罚的回收模型,我们分别为稀有和近乎稀少的信号建立精确和稳定的回收理论,并产生一种易于执行的碳化物算法差异。特别是,我们向一些现有模型展示其理论优势,在测量噪音较大或测量量有限的一些情景下,以更清晰的恢复力,并表明其数字稳健性,而不论感测矩阵的一致性如何不同。由于它以严格的测量、可计算性以及不完善的感测矩阵的数值稳健度为理论保证,因此春季惩罚对于通过一致性或静态感测硬件收集不完全和不准确的测量数据的情况特别有利。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月5日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员