Earth system models are complex integrated models of atmosphere, ocean, sea ice, and land surface. Coupling the components can be a significant challenge due to the difference in physics, temporal, and spatial scales. This study explores new coupling strategies for the fluid-fluid interaction problem based on multirate partitioned Runge-Kutta methods. We consider compressible Navier-Stokes equations with gravity coupled through a rigid-lid interface. Our large-scale numerical experiments reveal that multirate partitioned Runge-Kutta coupling schemes (1) can conserve total mass; (2) have second-order accuracy in time; and (3) provide favorable strong- and weak-scaling performance on modern computing architectures. We also show that the speedup factors of multirate partitioned Runge-Kutta methods match theoretical expectations over their base (single-rate) method.
翻译:地球系统模型是大气、海洋、海冰和陆地表面的复杂集成模型。由于物理、时间和空间尺度的差异,组件之间的耦合可能是一个重要的挑战。本研究探索了基于多速率分割龙格-库塔方法的流-流相互作用问题的新耦合策略。我们考虑了通过刚性盖子界面耦合的可压缩纳维尔-斯托克斯方程。我们的大规模数值实验表明,多速率分割龙格-库塔耦合方案:(1)可以保持总质量不变;(2)在时间上具有二阶精度;(3)在现代计算架构上提供有利的强和弱可扩展性。我们还展示了多速率分割龙格-库塔方法的加速比与其基础(单速率)方法的理论预期相匹配。