We propose a variational autoencoder architecture to model both ignorable and nonignorable missing data using pattern-set mixtures as proposed by Little (1993). Our model explicitly learns to cluster the missing data into missingness pattern sets based on the observed data and missingness masks. Underpinning our approach is the assumption that the data distribution under missingness is probabilistically semi-supervised by samples from the observed data distribution. Our setup trades off the characteristics of ignorable and nonignorable missingness and can thus be applied to data of both types. We evaluate our method on a wide range of data sets with different types of missingness and achieve state-of-the-art imputation performance. Our model outperforms many common imputation algorithms, especially when the amount of missing data is high and the missingness mechanism is nonignorable.
翻译:我们提出一个变式自动编码结构,用小不列颠(1993年)建议的模式设定混合物来模拟可忽略和不可忽略的数据缺失。我们的模型明确学会根据观察到的数据和缺失面罩将缺失的数据分组成缺失模式。我们的方法所依据的假设是,在缺失情况下的数据分布在概率上半由观察到的数据分布样本监督。我们的设置交换了可忽略和不可忽略的缺失的特征,因此可以适用于这两种类型的数据。我们评估了各种数据集中不同类型缺失的方法,并取得了最先进的估算性能。我们的模型比许多常见估算算法要强得多,特别是当缺失的数据数量高,而且缺失机制不亮的时候。