We propose APC-GNN++, an adaptive patient-centric Graph Neural Network for diabetes classification. Our model integrates context-aware edge attention, confidence-guided blending of node features and graph representations, and neighborhood consistency regularization to better capture clinically meaningful relationships between patients. To handle unseen patients, we introduce a mini-graph approach that leverages the nearest neighbors of the new patient, enabling real-time explainable predictions without retraining the global model. We evaluate APC-GNN++ on a real-world diabetes dataset collected from a regional hospital in Algeria and show that it outperforms traditional machine learning models (MLP, Random Forest, XGBoost) and a vanilla GCN, achieving higher test accuracy and macro F1- score. The analysis of node-level confidence scores further reveals how the model balances self-information and graph-based evidence across different patient groups, providing interpretable patient-centric insights. The system is also embedded in a Tkinter-based graphical user interface (GUI) for interactive use by healthcare professionals .
翻译:我们提出了APC-GNN++,一种用于糖尿病分类的自适应患者中心图神经网络。该模型集成了上下文感知的边注意力机制、置信度引导的节点特征与图表示融合以及邻域一致性正则化,以更好地捕捉患者间具有临床意义的关系。为处理未见患者,我们引入了一种微图方法,该方法利用新患者的最近邻,无需重新训练全局模型即可实现实时可解释预测。我们在从阿尔及利亚一家地区医院收集的真实世界糖尿病数据集上评估了APC-GNN++,结果表明其性能优于传统机器学习模型(MLP、随机森林、XGBoost)及基础图卷积网络(GCN),取得了更高的测试准确率与宏观F1分数。对节点级置信度分数的分析进一步揭示了模型如何在不同患者群体间平衡自身信息与基于图的证据,从而提供可解释的患者中心洞察。该系统还嵌入了一个基于Tkinter的图形用户界面(GUI),供医疗保健专业人员交互使用。