Code summarization is the task of generating readable summaries that are semantically meaningful and can accurately describe the presumed task of a software. Program comprehension has become one of the most tedious tasks for knowledge transfer. As the codebase evolves over time, the description needs to be manually updated each time with the changes made. An automatic approach is proposed to infer such captions based on benchmarked and custom datasets with comparison between the original and generated results.

0
下载
关闭预览

相关内容

一个旨在提升互联网阅读体验的工具。 readability.com/

In humans, Attention is a core property of all perceptual and cognitive operations. Given our limited ability to process competing sources, attention mechanisms select, modulate, and focus on the information most relevant to behavior. For decades, concepts and functions of attention have been studied in philosophy, psychology, neuroscience, and computing. For the last six years, this property has been widely explored in deep neural networks. Currently, the state-of-the-art in Deep Learning is represented by neural attention models in several application domains. This survey provides a comprehensive overview and analysis of developments in neural attention models. We systematically reviewed hundreds of architectures in the area, identifying and discussing those in which attention has shown a significant impact. We also developed and made public an automated methodology to facilitate the development of reviews in the area. By critically analyzing 650 works, we describe the primary uses of attention in convolutional, recurrent networks and generative models, identifying common subgroups of uses and applications. Furthermore, we describe the impact of attention in different application domains and their impact on neural networks' interpretability. Finally, we list possible trends and opportunities for further research, hoping that this review will provide a succinct overview of the main attentional models in the area and guide researchers in developing future approaches that will drive further improvements.

0
47
下载
预览

A code completion system suggests future code elements to developers given a partially-complete code snippet. Code completion is one of the most useful features in Integrated Development Environments (IDEs). Currently, most code completion techniques predict a single token at a time. In this paper, we take a further step and discuss the probability of directly completing a whole line of code instead of a single token. We believe suggesting longer code sequences can further improve the efficiency of developers. Recently neural language models have been adopted as a preferred approach for code completion, and we believe these models can still be applied to full-line code completion with a few improvements. We conduct our experiments on two real-world python corpora and evaluate existing neural models based on source code tokens or syntactical actions. The results show that neural language models can achieve acceptable results on our tasks, with significant room for improvements.

0
3
下载
预览

Bidirectional Encoder Representations from Transformers (BERT) represents the latest incarnation of pretrained language models which have recently advanced a wide range of natural language processing tasks. In this paper, we showcase how BERT can be usefully applied in text summarization and propose a general framework for both extractive and abstractive models. We introduce a novel document-level encoder based on BERT which is able to express the semantics of a document and obtain representations for its sentences. Our extractive model is built on top of this encoder by stacking several inter-sentence Transformer layers. For abstractive summarization, we propose a new fine-tuning schedule which adopts different optimizers for the encoder and the decoder as a means of alleviating the mismatch between the two (the former is pretrained while the latter is not). We also demonstrate that a two-staged fine-tuning approach can further boost the quality of the generated summaries. Experiments on three datasets show that our model achieves state-of-the-art results across the board in both extractive and abstractive settings. Our code is available at https://github.com/nlpyang/PreSumm

0
5
下载
预览

Existing video summarization approaches mainly concentrate on sequential or structural characteristic of video data. However, they do not pay enough attention to the video summarization task itself. In this paper, we propose a meta learning method for performing task-driven video summarization, denoted by MetaL-TDVS, to explicitly explore the video summarization mechanism among summarizing processes on different videos. Particularly, MetaL-TDVS aims to excavate the latent mechanism for summarizing video by reformulating video summarization as a meta learning problem and promote generalization ability of the trained model. MetaL-TDVS regards summarizing each video as a single task to make better use of the experience and knowledge learned from processes of summarizing other videos to summarize new ones. Furthermore, MetaL-TDVS updates models via a two-fold back propagation which forces the model optimized on one video to obtain high accuracy on another video in every training step. Extensive experiments on benchmark datasets demonstrate the superiority and better generalization ability of MetaL-TDVS against several state-of-the-art methods.

0
5
下载
预览

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably the revolutionary techniques are in the area of computer vision such as plausible image generation, image to image translation, facial attribute manipulation and similar domains. Despite the significant success achieved in computer vision field, applying GANs over real-world problems still have three main challenges: (1) High quality image generation; (2) Diverse image generation; and (3) Stable training. Considering numerous GAN-related research in the literature, we provide a study on the architecture-variants and loss-variants, which are proposed to handle these three challenges from two perspectives. We propose loss and architecture-variants for classifying most popular GANs, and discuss the potential improvements with focusing on these two aspects. While several reviews for GANs have been presented, there is no work focusing on the review of GAN-variants based on handling challenges mentioned above. In this paper, we review and critically discuss 7 architecture-variant GANs and 9 loss-variant GANs for remedying those three challenges. The objective of this review is to provide an insight on the footprint that current GANs research focuses on the performance improvement. Code related to GAN-variants studied in this work is summarized on https://github.com/sheqi/GAN_Review.

0
12
下载
预览

BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at https://github.com/nlpyang/BertSum

0
21
下载
预览

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

0
18
下载
预览

Automatic summarization of natural language is a current topic in computer science research and industry, studied for decades because of its usefulness across multiple domains. For example, summarization is necessary to create reviews such as this one. Research and applications have achieved some success in extractive summarization (where key sentences are curated), however, abstractive summarization (synthesis and re-stating) is a hard problem and generally unsolved in computer science. This literature review contrasts historical progress up through current state of the art, comparing dimensions such as: extractive vs. abstractive, supervised vs. unsupervised, NLP (Natural Language Processing) vs Knowledge-based, deep learning vs algorithms, structured vs. unstructured sources, and measurement metrics such as Rouge and BLEU. Multiple dimensions are contrasted since current research uses combinations of approaches as seen in the review matrix. Throughout this summary, synthesis and critique is provided. This review concludes with insights for improved abstractive summarization measurement, with surprising implications for detecting understanding and comprehension in general.

0
3
下载
预览

We propose a novel two-layered attention network based on Bidirectional Long Short-Term Memory for sentiment analysis. The novel two-layered attention network takes advantage of the external knowledge bases to improve the sentiment prediction. It uses the Knowledge Graph Embedding generated using the WordNet. We build our model by combining the two-layered attention network with the supervised model based on Support Vector Regression using a Multilayer Perceptron network for sentiment analysis. We evaluate our model on the benchmark dataset of SemEval 2017 Task 5. Experimental results show that the proposed model surpasses the top system of SemEval 2017 Task 5. The model performs significantly better by improving the state-of-the-art system at SemEval 2017 Task 5 by 1.7 and 3.7 points for sub-tracks 1 and 2 respectively.

0
3
下载
预览

While advances in computing resources have made processing enormous amounts of data possible, human ability to identify patterns in such data has not scaled accordingly. Thus, efficient computational methods for condensing and simplifying data are becoming vital for extracting actionable insights. In particular, while data summarization techniques have been studied extensively, only recently has summarizing interconnected data, or graphs, become popular. This survey is a structured, comprehensive overview of the state-of-the-art methods for summarizing graph data. We first broach the motivation behind and the challenges of graph summarization. We then categorize summarization approaches by the type of graphs taken as input and further organize each category by core methodology. Finally, we discuss applications of summarization on real-world graphs and conclude by describing some open problems in the field.

0
4
下载
预览
小贴士
相关论文
Alana de Santana Correia,Esther Luna Colombini
47+阅读 · 2021年3月31日
Towards Full-line Code Completion with Neural Language Models
Wenhan Wang,Sijie Shen,Ge Li,Zhi Jin
3+阅读 · 2020年9月18日
Yang Liu,Mirella Lapata
5+阅读 · 2019年8月22日
Xuelong Li,Hongli Li,Yongsheng Dong
5+阅读 · 2019年7月29日
Generative Adversarial Networks: A Survey and Taxonomy
Zhengwei Wang,Qi She,Tomas E. Ward
12+阅读 · 2019年6月4日
Yang Liu
21+阅读 · 2019年3月25日
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu,Shirui Pan,Fengwen Chen,Guodong Long,Chengqi Zhang,Philip S. Yu
18+阅读 · 2019年1月3日
Marc Everett Johnson
3+阅读 · 2018年12月18日
Abhishek Kumar,Daisuke Kawahara,Sadao Kurohashi
3+阅读 · 2018年6月16日
Yike Liu,Abhilash Dighe,Tara Safavi,Danai Koutra
4+阅读 · 2017年4月12日
相关VIP内容
专知会员服务
48+阅读 · 2021年1月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
46+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
46+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
19+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
39+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
13+阅读 · 2019年5月22日
已删除
将门创投
6+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
文字描述生成视频的开源项目
CreateAMind
5+阅读 · 2017年12月31日
论文报告 | Graph-based Neural Multi-Document Summarization
科技创新与创业
15+阅读 · 2017年12月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
12+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员