Variance-based global sensitivity analysis, in particular Sobol' analysis, is widely used for determining the importance of input variables to a computational model. Sobol' indices can be computed cheaply based on spectral methods like polynomial chaos expansions (PCE). Another choice are the recently developed Poincar\'e chaos expansions (PoinCE), whose orthonormal tensor-product basis is generated from the eigenfunctions of one-dimensional Poincar\'e differential operators. In this paper, we show that the Poincar\'e basis is the unique orthonormal basis with the property that partial derivatives of the basis form again an orthogonal basis with respect to the same measure as the original basis. This special property makes PoinCE ideally suited for incorporating derivative information into the surrogate modelling process. Assuming that partial derivative evaluations of the computational model are available, we compute spectral expansions in terms of Poincar\'e basis functions or basis partial derivatives, respectively, by sparse regression. We show on two numerical examples that the derivative-based expansions provide accurate estimates for Sobol' indices, even outperforming PCE in terms of bias and variance. In addition, we derive an analytical expression based on the PoinCE coefficients for a second popular sensitivity index, the derivative-based sensitivity measure (DGSM), and explore its performance as upper bound to the corresponding total Sobol' indices.


翻译:以差异为基础的全球敏感度分析, 特别是 Sobol 的分析, 被广泛用于确定输入变量对计算模型的重要性。 Sobol 指数可以廉价地根据光谱方法, 如多元混乱扩张( PCE) 来计算。 另一个选择是最近开发的Poincar\'e混乱扩张( Poince ), 其正统性高压产品基础来自单维Poincar\'e 差异操作员的异常功能。 在本文件中, 我们显示Poincar\'e 基础是独特的异常基础, 其属性是: 基础部分衍生物的衍生物在最初的基础上再次形成一个正反向基础。 这种特殊属性使得Poince 适合将衍生物信息纳入配方建模进程。 假设对计算模型的部分衍生物评价来自单维度, 我们根据Pincar\'e基础功能或部分衍生物基础, 分别通过稀释回归来计算光谱扩展。 我们用两个数字示例显示, 基于衍生物基础的衍生物衍生物的衍生物衍生物衍生物衍生物在原始基指数中提供了精确的精确的精确估计, 度度, 其分析性指数在SBEBEBEBE 上, 度上, 度上, 的高级分析性变化指数的上, 的上升的上升性变压值的上升性指数的上升的上, 的上升性指数的精确度, 度的高级性指数的精确度, 。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
4+阅读 · 2021年7月1日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员