Humans communicate with graphical sketches apart from symbolic languages. While recent studies of emergent communication primarily focus on symbolic languages, their settings overlook the graphical sketches existing in human communication; they do not account for the evolution process through which symbolic sign systems emerge in the trade-off between iconicity and symbolicity. In this work, we take the very first step to model and simulate such an evolution process via two neural agents playing a visual communication game; the sender communicates with the receiver by sketching on a canvas. We devise a novel reinforcement learning method such that agents are evolved jointly towards successful communication and abstract graphical conventions. To inspect the emerged conventions, we carefully define three key properties -- iconicity, symbolicity, and semanticity -- and design evaluation methods accordingly. Our experimental results under different controls are consistent with the observation in studies of human graphical conventions. Of note, we find that evolved sketches can preserve the continuum of semantics under proper environmental pressures. More interestingly, co-evolved agents can switch between conventionalized and iconic communication based on their familiarity with referents. We hope the present research can pave the path for studying emergent communication with the unexplored modality of sketches.
翻译:人类与象征语言不同的图形素描进行交流。 虽然最近对新兴通信的研究主要侧重于象征性语言, 但其设置忽略了人类通信中存在的图形素描; 它们没有说明在符号性和象征性之间取舍中出现符号标志系统的进化过程; 在这项工作中,我们迈出了第一步,通过两个神经剂玩视觉通信游戏来模拟和模拟这种进化过程; 发送者通过在画布上画画与接收者沟通; 我们设计了一种新型强化学习方法, 使代理商能够共同演变为成功的通信和抽象图形公约; 为了检查新出现的公约, 我们仔细地定义了三种关键特性 -- -- 符号性、象征性和精度 -- 并据此设计了评价方法。 我们在不同控制下进行的实验结果与人类图形学研究中观察的结果是一致的。 值得注意的是, 我们发现进化的草图可以在适当的环境压力下保存语义学的连续体。 更有趣的是, 共同演变的代理商可以根据他们对参考文献的熟悉程度, 将传统通信与标志性通信转换为交汇。 我们希望目前的研究可以铺垫路。