Active Inference (ActInf) is an emerging theory that explains perception and action in biological agents, in terms of minimizing a free energy bound on Bayesian surprise. Goal-directed behavior is elicited by introducing prior beliefs on the underlying generative model. In contrast to prior beliefs, which constrain all realizations of a random variable, we propose an alternative approach through chance constraints, which allow for a (typically small) probability of constraint violation, and demonstrate how such constraints can be used as intrinsic drivers for goal-directed behavior in ActInf. We illustrate how chance-constrained ActInf weights all imposed (prior) constraints on the generative model, allowing e.g., for a trade-off between robust control and empirical chance constraint violation. Secondly, we interpret the proposed solution within a message passing framework. Interestingly, the message passing interpretation is not only relevant to the context of ActInf, but also provides a general purpose approach that can account for chance constraints on graphical models. The chance constraint message updates can then be readily combined with other pre-derived message update rules, without the need for custom derivations. The proposed chance-constrained message passing framework thus accelerates the search for workable models in general, and can be used to complement message-passing formulations on generative neural models.


翻译:积极推论(ActInf)是一个新兴理论,它解释生物制剂的观念和行动,最大限度地减少受巴伊西亚突袭约束的免费能源。目标导向的行为是通过引入对基本基因模型的先入为主的信念来诱导的。与限制随机变数所有实现的先入之见不同的是,我们提出一种通过机会限制的替代方法,这种机会限制允许(通常很小的)受限制的违反概率,并表明如何利用这种限制作为在ActInf中受目标引导的行为的内在驱动因素。我们说明了机会限制的ActInf如何使基因模型受到所有限制(主要),例如允许在稳健的控制和经经验性机会限制的违反之间进行交易。第二,我们在传递信息的框架内解释拟议的解决办法。有趣的是,传递信息的解释不仅与ActInf的背景有关,而且还提供了一种总的目的方法,可以说明对图形模型的风险限制。然后,机会限制信息更新可以很容易地与其他源前信息更新规则结合起来,而不必进行自定义的衍生。拟议的对基因模型加以补充,从而加速搜索。

0
下载
关闭预览

相关内容

边缘机器学习,21页ppt
专知会员服务
83+阅读 · 2021年6月21日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
64+阅读 · 2020年12月11日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月28日
Arxiv
0+阅读 · 2021年6月24日
Constrained Classification and Policy Learning
Arxiv
0+阅读 · 2021年6月24日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
边缘机器学习,21页ppt
专知会员服务
83+阅读 · 2021年6月21日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
64+阅读 · 2020年12月11日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员