We study visual domain transfer for end-to-end imitation learning in a realistic and challenging setting where target-domain data are strictly off-policy, expert-free, and scarce. We first provide a theoretical analysis showing that the target-domain imitation loss can be upper bounded by the source-domain loss plus a state-conditional latent KL divergence between source and target observation models. Guided by this result, we propose State- Conditional Adversarial Learning, an off-policy adversarial framework that aligns latent distributions conditioned on system state using a discriminator-based estimator of the conditional KL term. Experiments on visually diverse autonomous driving environments built on the BARC-CARLA simulator demonstrate that SCAL achieves robust transfer and strong sample efficiency.


翻译:我们研究端到端模仿学习中的视觉领域迁移问题,该研究设定于一个现实且具有挑战性的场景:目标领域数据严格遵循离策略、无专家指导且数量稀缺。我们首先提供了理论分析,表明目标领域的模仿损失可以被源领域损失加上源与目标观测模型之间的状态条件潜在KL散度的上界所约束。基于这一结果,我们提出了状态条件对抗学习,这是一种离策略对抗框架,它利用基于判别器的条件KL项估计器,在系统状态条件下对齐潜在分布。在基于BARC-CARLA模拟器构建的视觉多样性自动驾驶环境中的实验表明,SCAL实现了稳健的迁移和强大的样本效率。

0
下载
关闭预览

相关内容

【ICML2024】TIMEX++: 通过信息瓶颈学习时间序列解释
专知会员服务
17+阅读 · 2024年5月16日
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
【ICML2022】DRIBO:基于多视图信息瓶颈的鲁棒深度强化学习
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
28+阅读 · 2020年4月1日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【ICML2024】TIMEX++: 通过信息瓶颈学习时间序列解释
专知会员服务
17+阅读 · 2024年5月16日
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
【ICML2022】DRIBO:基于多视图信息瓶颈的鲁棒深度强化学习
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
28+阅读 · 2020年4月1日
相关资讯
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员