Authorship analysis is an important subject in the field of natural language processing. It allows the detection of the most likely writer of articles, news, books, or messages. This technique has multiple uses in tasks related to authorship attribution, detection of plagiarism, style analysis, sources of misinformation, etc. The focus of this paper is to explore the limitations and sensitiveness of established approaches to adversarial manipulations of inputs. To this end, and using those established techniques, we first developed an experimental frame-work for author detection and input perturbations. Next, we experimentally evaluated the performance of the authorship detection model to a collection of semantic-preserving adversarial perturbations of input narratives. Finally, we compare and analyze the effects of different perturbation strategies, input and model configurations, and the effects of these on the author detection model.
翻译:作者分析是自然语言处理领域的一个重要课题,它能够探测最有可能撰写文章、新闻、书籍或信息的人。这种技术在与作者归属、发现损耗、风格分析、错误信息来源等有关的任务中具有多种用途。本文件的重点是探讨对投入的对抗性操纵的既定办法的局限性和敏感性。为此,我们利用这些既定技术,首先开发了一种试验框架工作,用于检测作者和输入扰动。接着,我们实验性地评估了作者探测模型的性能,以收集对输入说明进行语义保留对抗性扰动的情况。最后,我们比较并分析了不同扰动策略、输入和模型配置的影响,以及这些对作者探测模型的影响。