We study the problem of imposing conversational goals/keywords on open-domain conversational agents, where the agent is required to lead the conversation to a target keyword smoothly and fast. Solving this problem enables the application of conversational agents in many real-world scenarios, e.g., recommendation and psychotherapy. The dominant paradigm for tackling this problem is to 1) train a next-turn keyword classifier, and 2) train a keyword-augmented response retrieval model. However, existing approaches in this paradigm have two limitations: 1) the training and evaluation datasets for next-turn keyword classification are directly extracted from conversations without human annotations, thus, they are noisy and have low correlation with human judgements, and 2) during keyword transition, the agents solely rely on the similarities between word embeddings to move closer to the target keyword, which may not reflect how humans converse. In this paper, we assume that human conversations are grounded on commonsense and propose a keyword-guided neural conversational model that can leverage external commonsense knowledge graphs (CKG) for both keyword transition and response retrieval. Automatic evaluations suggest that commonsense improves the performance of both next-turn keyword prediction and keyword-augmented response retrieval. In addition, both self-play and human evaluations show that our model produces responses with smoother keyword transition and reaches the target keyword faster than competitive baselines.
翻译:我们研究将对话目标/关键词强加在开放式对话代理器上的问题,要求该代理商将对话引导到一个目标关键字上。解决这个问题可以在许多现实世界情景中应用对话代理器,例如建议和心理治疗。解决这一问题的主要范式是:(1)培训下一个转键分类器,(2)培训一个关键词强化反应检索模式。然而,这一范式中的现有做法有两个局限性:(1) 用于下一转关键字分类的培训和评价数据集直接从对话中提取,而没有人类的注释,因此,它们噪音和与人类判断的相关性较低;(2) 在关键字转换期间,该代理商完全依靠嵌入词之间的相似性来接近目标关键字,这可能不反映人类的反向。在本文中,我们假设人类对话以常识为基础,并提议一个关键词引导的神经对话模式模型,能够利用外部通用知识图表(CKG)来快速转换和回复。 自动评估表明,通用关键词将改进我们的关键词的自我转换,同时改进了我们的关键词的自我转换,从而改进了对关键词的自我转换,从而改进了我们的关键词的自我转换。