In object detection, bounding box regression (BBR) is a crucial step that determines the object localization performance. However, we find that most previous loss functions for BBR have two main drawbacks: (i) Both $\ell_n$-norm and IOU-based loss functions are inefficient to depict the objective of BBR, which leads to slow convergence and inaccurate regression results. (ii) Most of the loss functions ignore the imbalance problem in BBR that the large number of anchor boxes which have small overlaps with the target boxes contribute most to the optimization of BBR. To mitigate the adverse effects caused thereby, we perform thorough studies to exploit the potential of BBR losses in this paper. Firstly, an Efficient Intersection over Union (EIOU) loss is proposed, which explicitly measures the discrepancies of three geometric factors in BBR, i.e., the overlap area, the central point and the side length. After that, we state the Effective Example Mining (EEM) problem and propose a regression version of focal loss to make the regression process focus on high-quality anchor boxes. Finally, the above two parts are combined to obtain a new loss function, namely Focal-EIOU loss. Extensive experiments on both synthetic and real datasets are performed. Notable superiorities on both the convergence speed and the localization accuracy can be achieved over other BBR losses.


翻译:在目标检测中,捆绑框回归(BBR)是一个关键步骤,决定目标定位性性能。然而,我们发现,BBR以往的大部分损失功能存在两个主要缺陷:(一) 美元-美元-诺尔姆和IOU基础上的亏损功能都无法有效地描述BBR的目标,从而导致趋同速度和不准确的回归结果。 (二) 大多数损失功能忽视了BBR的不平衡问题,即与目标框有小部分重叠的大量锚箱对优化BBBR作用作用。为了减轻由此造成的不利效应,我们进行了彻底研究,以发掘BBBR损失的可能性。首先,提出了对UU(EOU)损失的有效交叉功能,以明确衡量BBBR(即重叠区域、中心点和侧面长度)的三个几何因素的差异。之后,我们陈述了有效示例采矿(EEM)问题,并提出一个焦点损失的回归版本,以高品质锁定锁定锁定的锚箱为焦点。最后,上述两个部分合起来,以获得BBBBB公司损失的潜在精确性交叉率。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
110+阅读 · 2020年3月12日
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
目标检测中边界框的回归策略
极市平台
17+阅读 · 2019年9月8日
非平衡数据集 focal loss 多类分类
AI研习社
33+阅读 · 2019年4月23日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD
七月在线实验室
11+阅读 · 2018年7月18日
从YOLOv1到YOLOv3,目标检测的进化之路
AI100
9+阅读 · 2018年6月4日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
论文 | 用于密集对象检测的 Focal Loss 函数
七月在线实验室
9+阅读 · 2018年1月4日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
6+阅读 · 2020年9月29日
Arxiv
5+阅读 · 2020年3月16日
Arxiv
5+阅读 · 2019年4月8日
Few-shot Adaptive Faster R-CNN
Arxiv
3+阅读 · 2019年3月22日
VIP会员
相关VIP内容
专知会员服务
110+阅读 · 2020年3月12日
相关资讯
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
目标检测中边界框的回归策略
极市平台
17+阅读 · 2019年9月8日
非平衡数据集 focal loss 多类分类
AI研习社
33+阅读 · 2019年4月23日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD
七月在线实验室
11+阅读 · 2018年7月18日
从YOLOv1到YOLOv3,目标检测的进化之路
AI100
9+阅读 · 2018年6月4日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
论文 | 用于密集对象检测的 Focal Loss 函数
七月在线实验室
9+阅读 · 2018年1月4日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员