For every constant c > 0, we show that there is a family {P_{N, c}} of polynomials whose degree and algebraic circuit complexity are polynomially bounded in the number of variables, that satisfies the following properties: * For every family {f_n} of polynomials in VP, where f_n is an n variate polynomial of degree at most n^c with bounded integer coefficients and for N = \binom{n^c + n}{n}, P_{N,c} \emph{vanishes} on the coefficient vector of f_n. * There exists a family {h_n} of polynomials where h_n is an n variate polynomial of degree at most n^c with bounded integer coefficients such that for N = \binom{n^c + n}{n}, P_{N,c} \emph{does not vanish} on the coefficient vector of h_n. In other words, there are efficiently computable equations for polynomials in VP that have small integer coefficients. In fact, we also prove an analogous statement for the seemingly larger class VNP. Thus, in this setting of polynomials with small integer coefficients, this provides evidence \emph{against} a natural proof like barrier for proving algebraic circuit lower bounds, a framework for which was proposed in the works of Forbes, Shpilka and Volk (2018), and Grochow, Kumar, Saks and Saraf (2017). Our proofs are elementary and rely on the existence of (non-explicit) hitting sets for VP (and VNP) to show that there are efficiently constructible, low degree equations for these classes. Our proofs also extend to finite fields of small size.


翻译:对于每个常数 c > 0, 我们显示, 在 f_ n 的变量中, 有家庭 {P{N}, c ⁇ 的多球体, 其程度和代数电路复杂度在变量数量上是多元的, 这满足了以下属性 : * 对于 VP 中每个多球体 {f_n} 的家庭 {f_n}, 其中f_n 最多为Nvval- 多元度, 最多为nvc, 其中F_n=binom{n{c + n ⁇ n}, N=\binom{n{n}, p ⁇ {c+n}, P{N} 等离子体( listal), P{nph{vanishes} 在 f_n_n 的变数矢量矢量矢量中, 存在一个家族 {h_n_n_n} 的多球体系, 其中h_n=nvlational- mexal log log 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
118+阅读 · 2020年5月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员