This report focuses on safety aspects of connected and automated vehicles (CAVs). The fundamental question to be answered is how can CAVs improve road users' safety? Using advanced data mining and thematic text analytics tools, the goal is to systematically synthesize studies related to Big Data for safety monitoring and improvement. Within this domain, the report systematically compares Big Data initiatives related to transportation initiatives nationally and internationally and provides insights regarding the evolution of Big Data science applications related to CAVs and new challenges. The objectives addressed are: 1-Creating a database of Big Data efforts by acquiring reports, white papers, and journal publications; 2-Applying text analytics tools to extract key concepts, and spot patterns and trends in Big Data initiatives; 3-Understanding the evolution of CAV Big Data in the context of safety by quantifying granular taxonomies and modeling entity relations among contents in CAV Big Data research initiatives, and 4-Developing a foundation for exploring new approaches to tracking and analyzing CAV Big Data and related innovations. The study synthesizes and derives high-quality information from innovative research activities undertaken by various research entities through Big Data initiatives. The results can provide a conceptual foundation for developing new approaches for guiding and tracking the safety implications of Big Data and related innovations.


翻译:本报告侧重于连接和自动化车辆(CAVs)的安全方面。需要回答的根本问题是,CAVs如何改善道路使用者的安全?使用先进的数据挖掘和专题文本分析工具,目标是系统地综合与大数据有关的研究,以促进安全监测和改进;在这一领域,报告系统地比较与国家和国际运输举措有关的大数据举措,并深入了解与CAV有关的大数据科学应用和新挑战的演变情况。目标如下:通过获取报告、白皮书和期刊出版物,建立一个大数据工作数据库;2个辅助文本分析工具,以提取大数据举措的关键概念、点样模式和趋势;3 了解CAV大数据在安全方面的变化,通过量化颗粒分类和建模CAVB大数据研究举措各内容之间的实体关系,4个为探索跟踪和分析CAV Big数据及相关创新的新办法奠定基础。研究综合并获取来自各研究实体通过大数据举措开展的创新研究活动的高质量信息;3个了解CAV BD大数据在安全方面的变化,为数据相关跟踪提供概念基础。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
50+阅读 · 2020年10月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
18+阅读 · 2020年10月9日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员