This report focuses on safety aspects of connected and automated vehicles (CAVs). The fundamental question to be answered is how can CAVs improve road users' safety? Using advanced data mining and thematic text analytics tools, the goal is to systematically synthesize studies related to Big Data for safety monitoring and improvement. Within this domain, the report systematically compares Big Data initiatives related to transportation initiatives nationally and internationally and provides insights regarding the evolution of Big Data science applications related to CAVs and new challenges. The objectives addressed are: 1-Creating a database of Big Data efforts by acquiring reports, white papers, and journal publications; 2-Applying text analytics tools to extract key concepts, and spot patterns and trends in Big Data initiatives; 3-Understanding the evolution of CAV Big Data in the context of safety by quantifying granular taxonomies and modeling entity relations among contents in CAV Big Data research initiatives, and 4-Developing a foundation for exploring new approaches to tracking and analyzing CAV Big Data and related innovations. The study synthesizes and derives high-quality information from innovative research activities undertaken by various research entities through Big Data initiatives. The results can provide a conceptual foundation for developing new approaches for guiding and tracking the safety implications of Big Data and related innovations.
翻译:本报告侧重于连接和自动化车辆(CAVs)的安全方面。需要回答的根本问题是,CAVs如何改善道路使用者的安全?使用先进的数据挖掘和专题文本分析工具,目标是系统地综合与大数据有关的研究,以促进安全监测和改进;在这一领域,报告系统地比较与国家和国际运输举措有关的大数据举措,并深入了解与CAV有关的大数据科学应用和新挑战的演变情况。目标如下:通过获取报告、白皮书和期刊出版物,建立一个大数据工作数据库;2个辅助文本分析工具,以提取大数据举措的关键概念、点样模式和趋势;3 了解CAV大数据在安全方面的变化,通过量化颗粒分类和建模CAVB大数据研究举措各内容之间的实体关系,4个为探索跟踪和分析CAV Big数据及相关创新的新办法奠定基础。研究综合并获取来自各研究实体通过大数据举措开展的创新研究活动的高质量信息;3个了解CAV BD大数据在安全方面的变化,为数据相关跟踪提供概念基础。