Data valuation and monetization are becoming increasingly important across domains such as eXtended Reality (XR) and digital media. In the context of 3D scene reconstruction from a set of images -- whether casually or professionally captured -- not all inputs contribute equally to the final output. Neural Radiance Fields (NeRFs) enable photorealistic 3D reconstruction of scenes by optimizing a volumetric radiance field given a set of images. However, in-the-wild scenes often include image captures of varying quality, occlusions, and transient objects, resulting in uneven utility across inputs. In this paper we propose a method to quantify the individual contribution of each image to NeRF-based reconstructions of in-the-wild image sets. Contribution is assessed through reconstruction quality metrics based on PSNR and MSE. We validate our approach by removing low-contributing images during training and measuring the resulting impact on reconstruction fidelity.
翻译:数据价值评估与货币化在扩展现实(XR)和数字媒体等领域正变得日益重要。在从一组图像(无论是随意拍摄还是专业拍摄)进行三维场景重建的背景下,并非所有输入对最终输出都具有同等贡献。神经辐射场(NeRFs)通过给定一组图像优化体积辐射场,实现了场景的光照真实三维重建。然而,真实场景中的图像采集往往存在质量差异、遮挡和瞬态物体,导致不同输入的效用不均。本文提出一种方法,用于量化每张图像对基于NeRF的真实图像集重建的个体贡献。贡献度通过基于峰值信噪比(PSNR)和均方误差(MSE)的重建质量指标进行评估。我们通过在训练过程中移除低贡献图像并测量其对重建保真度的影响,验证了所提方法的有效性。