The current body of research on Parkinson's disease (PD) screening, monitoring, and management has evolved along two largely independent trajectories. The first research community focuses on multimodal sensing of PD-related biomarkers using noninvasive technologies such as inertial measurement units (IMUs), force/pressure insoles, electromyography (EMG), electroencephalography (EEG), speech and acoustic analysis, and RGB/RGB-D motion capture systems. These studies emphasize data acquisition, feature extraction, and machine learning-based classification for PD screening, diagnosis, and disease progression modeling. In parallel, a second research community has concentrated on robotic intervention and rehabilitation, employing socially assistive robots (SARs), robot-assisted rehabilitation (RAR) systems, and virtual reality (VR)-integrated robotic platforms for improving motor and cognitive function, enhancing social engagement, and supporting caregivers. Despite the complementary goals of these two domains, their methodological and technological integration remains limited, with minimal data- level or decision-level coupling between the two. With the advent of advanced artificial intelligence (AI), including large language models (LLMs), agentic AI systems, a unique opportunity now exists to unify these research streams. We envision a closed-loop sensor-AI-robot framework in which multimodal sensing continuously guides the interaction between the patient, caregiver, humanoid robot (and physician) through AI agents that are powered by a multitude of AI models such as robotic and wearables foundation models, LLM-based reasoning, reinforcement learning, and continual learning. Such closed-loop system enables personalized, explainable, and context-aware intervention, forming the basis for digital twin of the PD patient that can adapt over time to deliver intelligent, patient-centered PD care.
翻译:当前关于帕金森病筛查、监测与管理的研究主要沿着两条相对独立的轨迹发展。第一个研究领域聚焦于利用非侵入性技术对帕金森病相关生物标志物进行多模态感知,这些技术包括惯性测量单元、力/压力鞋垫、肌电图、脑电图、语音与声学分析以及RGB/RGB-D运动捕捉系统。此类研究侧重于数据采集、特征提取以及基于机器学习的分类方法,以用于帕金森病筛查、诊断及疾病进展建模。与此同时,第二个研究领域则专注于机器人干预与康复,采用社交辅助机器人、机器人辅助康复系统以及虚拟现实融合的机器人平台,旨在改善运动与认知功能、增强社会参与度并为照护者提供支持。尽管这两个领域的目标具有互补性,但它们在方法学与技术层面的整合仍显不足,两者之间在数据层面或决策层面的耦合极为有限。随着包括大语言模型、代理式人工智能系统在内的先进人工智能技术的兴起,当前正面临一个独特的机遇,可将这些研究脉络统一起来。我们设想一个闭环的传感器-人工智能-机器人框架,其中多模态感知通过由多种人工智能模型(如机器人及可穿戴设备基础模型、基于大语言模型的推理、强化学习与持续学习)驱动的人工智能代理,持续引导患者、照护者、人形机器人(及医生)之间的交互。此类闭环系统能够实现个性化、可解释且情境感知的干预,从而为构建帕金森病患者的数字孪生体奠定基础,该孪生体可随时间自适应,以提供智能化、以患者为中心的帕金森病照护。